$C_{\text{ycloaddition of } CO_2 \text{ and } CS_2 \text{ to a Cyclic Phosphazene}$

Thomas von Criegern,¹ Kurt Polborn,¹ and Alfred Schmidpeter²

¹Institut für Anorganische Chemie der Ludwig-Maximilians-Universität, Meiserstrasse 1, München, Germany

²Institut für Organische Chemie der Ludwig-Maximilians-Universität, Karlstrasse 23, D-80333 München, Germany

Received 30 July 1998; revised 8 September 1998

ABSTRACT: Carbon dioxide and carbon disulfide give crystalline cycloadducts with the phosphazene bond of a $1,2\lambda^5$ -azaphosphole. The CO₂-adduct fully dissociates in solution, the CS₂-adduct on short heating only to a small part. On longer heating, the latter rearranges in two successive 1,3-shifts to give a thiophosphinylimino dihydrothiophene, the structure of which is revealed by X-ray analysis. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10:167–170, 1999

INTRODUCTION

The 1,2 λ^5 -azaphospholes 1 are easily accessible from the cycloaddition of methyl acetylene dicarboxylate and diphenylmethylene aminophosphines [1]; $\delta^{31}P = 55.1$ (1a), 47.4 (1b).

They are examples of phosphazenes (iminophosphoranes) that deviate, however, significantly in reactivity from the usual. As part of a five-membered ring, the phosphazene unit becomes much more prone to addition and cycloaddition reactions than in open chain or larger ring compounds. A number of various [2 + 2] and [3 + 2] cycloaddition reactions have been shown with compounds 1 [2–9], among them the cycloaddition of heterocumulenes such as isocyanates [3], isothiocyanates [4], and diphenyl ketene [5]. The cycloaddition of CS₂ has once been mentioned [9]. Here we report about the addition of carbon dioxide and carbon disulfide and also about the rearrangement of a cycloadduct of the latter.

ADDITION OF CO2

A solution of the yellow compound **1a** absorbs carbon dioxide if the resulting cycloadduct at the same time is made to precipitate. The crystalline and colorless adduct **2** is stable at room temperature and has been identified by elemental analysis and IR spectrum.

In solution, it redissociates, however, establishing a mobile equilibrium from which the carbon dioxide

Correspondence to: Alfred Schmidpeter

^{© 1999} John Wiley & Sons, Inc. CCC 1042-7163/99/020167-04

is lost. The room temperature ³¹P NMR spectra consequently only show broad signals with the chemical shift varying around $\delta^{31}P = 20$, which can be understood as averaged shifts of **2** and **1a**. No reaction of carbon dioxide could be observed with **1b**.

ADDITION OF CS₂

Carbon disulfide and the azaphospholes **1a,b** react to yield crystalline yellow adducts **4**. The high field chemical shift of their chloroform solution $\delta^{31}P =$ -40.0 (**4a**), -38.3 (**4b**) clearly indicates the pentacoordination of phosphorus. As for other phosphoranes, with the phosphorus atom at the bridgehead of a bicyclo[3.2.0]heptane skeleton, a trigonal bipyramidal structure with the rings in meridional placement [10,11] must be expected. This structure is verified for **4a** by the equivalence of the two *P*-methyl groups in the ¹H NMR spectrum.

For a DMSO solution of 4a, $\delta^{31}P = 25.9$ was found, indicating a mobile equilibrium with the ringopened zwitterionic form and suggesting a 15–20 % contribution of 3a in the polar solvent. Heating the anisole solution of 4a, **b** for a short time to 100°C, on the other hand, results in ³¹P NMR spectra that show both the signals of 4 and 1. When the solutions are cooled, the relative intensity of the latter signal decreases again. This indicates a relatively slow and reversible thermal dissociation of **4**.

THERMAL REARRANGEMENT

Heating the anisole solutions of **4a**,**b** for longer times (1 h) to 130–150°C results in new products with $\delta^{31}P = 62.0$ (6a), 53.1 (6b), which accordingly contain a tetracoordinate phosphorus atom. Compound 6b has been isolated as bright yellow crystals. It has the same composition as **4b** and consequently originates from a rearrangement of **4b**. ³¹P NMR and MS hint at the presence of a Ph₂PS group; the full structure,

however, becomes evident only from the X-ray structure analysis (Figure 1, Table 1).

In the rearrangement, three σ bonds (CS, CP, and CN) must be broken, and two bonds (CC and CS) must be formed. This necessitates at least one intermediate. As 4 is a Wittig-type adduct, its most obvious reaction would be the cycloreversion of the fourmembered ring with the phosphorus atom becoming four coordinate and the nitrogen atom being inte-

FIGURE 1 Molecular structure of **6b** in the crystal (thermal ellipsoids with 30% probability).

FABLE 1 Relevant Bond Lengths	s [Å] a	and Angles	[°] for	6b
--------------------------------------	---------	------------	---------	----

S1-P1 S2-C13 S2-C16 P1-N1 P1-C7 P1-C1 O1-C17 O2-C17 O3-C19 O4-C19 N1-C13 C13-C14 C14-C15 C14-C17 C15-C19 C15-C16	1.940(1) 1.753(2) 1.879(2) 1.677(2) 1.810(2) 1.811(3) 1.189(3) 1.322(3) 1.190(3) 1.317(3) 1.277(3) 1.474(3) 1.334(3) 1.505(3) 1.499(3) 1.524(3)	C13-S2-C16 N1-P1-C7 N1-P1-C1 C7-P1-C1 C7-P1-S1 C1-P1-S1 C1-P1-S1 N1-C13-S2 C14-C13-S2 C15-C14-C13 C15-C14-C17 C13-C14-C17 C13-C14-C17 C14-C15-C16 C19-C15-C16 C19-C15-C16 C15-C16-C27 C15-C16-C21 C27-C16-S2 C27-C16-S2 C21-C16-S2 O1-C17-O2 O1-C17-C14 O2-C17-C14	94.1(1) 100.4(1) 103.7(1) 104.8(1) 118.2(1) 113.0(1) 114.9(1) 119.0(2) 131.3(2) 109.7(2) 115.7(2) 128.2(2) 115.7(2) 128.2(2) 116.0(2) 123.3(2) 113.5(2) 109.7(2) 115.1(2) 103.6(1) 105.8(2) 124.6(2) 124.6(2) 124.6(2) 108.4(2)
		01-C17-O2 01-C17-C14 02-C17-C14 02-C19-O4	126.9(2) 124.6(2) 108.4(2) 124.8(2)
		03-C19-C15 04-C19-C15	123.0(2) 123.2(2) 112.2(2)

grated in an isothiocyanate group. As the PN bond is kept in 6, it must not open in this reaction, however. Instead, after pseudorotation of 4 to its facial isomer, the opening of the CS bond is accompanied by the opening of the CP bond and the closure of the CC bond. This leads to compound 5 as an intermediate on the way from 4 to 6, and there seems no reasonable alternative to it.

For the rearrangement from 5 to 6, a two-step pathway seems most likely: At first, the CN bond opens to give a zwitterion that in forming the CS bond closes the ring again [12]. The result is in accord with an aza-Wittig reaction inasmuch as from the P = Nbond of 1 and a C=S bond of the carbon disulfide the P = S and the C = N bond of 6 are formed.

EXPERIMENTAL

IR: Perkin-Elmer 325, nujol/hostaflon mull. NMR: Varian HR 100, TMS internal, H₃PO₄ external. MS: Varian CH 7. Compounds 1 were prepared as described [1].

CO_2 -Adduct 2

To a yellow solution of 1a (1.55 g, 5.04 mmol) in 3 mL of chloroform, *n*-pentane was carefully added to gain supersaturation. When dry carbon dioxide was

TABLE 2 Crystal Data and Structure Refinement for 6b

Empirical formula	C. H. NO PS
Formula weight	583 63
Temperature	293(2) K
Wavelength	0 71073 Å
Crystal system	monoclinic
Space group	P2/p
Unit cell dimensions	FZ_{1}/II
	a = 12.400(4) A
	D = 14.390(4) A
	C = 10.923(4) A
	p = 108.00(2)
volume	2874.9(14) A ³
	4 4 0.40 Ma/ma%
Density (calculated)	1.348 Mg/m ^o
Absorption coefficient	0.279 mm ⁻ '
F (000)	1216
Crystal size	$0.53 \times 0.43 \times 0.40$ mm
⊖ range for data collection	2.82 to 23.97°
Index ranges	$-14 \le h 0, -16 \le k \le 0,$
	$-18 \le l \le 19$
Reflections collected	4725
Independent reflections	4495 [$R(int) = 0.0101$]
Observed reflections ($I >$	3518
2σI)	
Absorption correction	Semi-empirical from ψ -
	scans
Max. and min. transmission	0.9995 and 0.9768
Refinement method	Full-matrix least squares on
	F ²
Data / restraints /	4495 / 0 / 363
parameters	
Goodness-of-fit on F ²	1.109
Final R indices $[I > 2\sigma(I)]$	<i>R1</i> = 0.0381, <i>wR</i> 2 =
	0.0819
R indices (all data)	R1 = 0.0567, wR2 =
	0.0920
Largest diff. peak and hole	0.228 and -0.202 eÅ-3

Additional information of the crystal structure determination are deposited at the Cambridge Crystallographic Data Center (CCCD 102537).

passed into this solution, it immediately became colorless, and a crystalline precipitate of 2 separated. The latter was isolated and dried in vacuo while it stayed colorless; yield 1.65 g (96%), mp 152–155°C. IR: 1742, 1728, and 1716 cm⁻¹ (CO). Anal. calcd for C₂₂H₂₂NO₆P (427.4): C, 61.82; H, 5.18; N, 3.27; found: C, 61.56; H, 5.50; N, 3.38.

When the crystals were dissolved in CDCl₃, they immediately lost CO₂ and gave a yellow solution of 1a.

CS₂-Adducts 4

To a solution of 1a (3.10 g, 8.32 mmol) in 10 mL of dichloromethane, 2 mL of carbon disulfide, and, after 1 hour, *n*-pentane were added, then yellow crystals of 4a separated; yield 3.45 g (90%), mp 134-135°C with vigorous decomposition. IR: 1740, 1707

cm⁻¹ (CO). ³¹P NMR: δ (anisole) = -42.9, δ (CDCl₃) = 40.0, δ (DMSO) = -25.9. ¹H NMR (CDCl₃): δ = 2.65 (d, ²*J*_{PH} = 12.5 Hz, 3H, PCH₃), 3.46 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃). MS (70 eV, 120°C): *m/z* = 400 (6.4%, M⁺ - CO₂Me), 383 (91.6%, M⁺ -CS₂), 76 (100%, CS₂⁺). Anal. calcd for C₂₂H₂₂NO₄PS₂ (459.5): C, 57.50; H, 4.82; N, 3.04; found: C, 57.25; H, 4.82; N, 2.99.

To a solution of **1b** (3.48 g, 6.87 mmol) in 15 mL of dichloromethane, 2 mL of carbon disulfide was added. After 35 minutes, light yellow crystals of **4b** separated. Yield 3.26 g (82%), mp 146–149°C with decomposition; hardly soluble in usual solvents even on warming. IR: 1742, 1734 cm⁻¹ (CO). ³¹P NMR (CDCl₃): δ = 38.3. ¹H NMR (CDCl₃): δ = 3.38 (s, 3H, OCH₃), 3.44 (s, 3H, OCH₃). Anal. calcd for C₃₂H₂₆NO₄PS (583.6): C, 65.85; H, 4.49; N, 2.39; found: C, 65.78; H, 4.61; N, 2.44.

Rearrangement of **4b** *to* 2-*Diphenylthiophosphinylimino-3,4-bis(methoxycarbonyl)-5,5diphenyl-dihydrothiophene* **(6b)**

A solution of **4b** (2.50 g, 4.28 mmol) in 10 mL of anisole was warmed to 145°C for 1 hour and turned orange red. After 15 hours at room temperature, bright yellow crystals of **6b** (Table 2) had separated; yield 1.85 g (74%), mp 212–213°C. IR: 1755, 1720 (CO), 1650 (CC), 1590 cm⁻¹ (CN). ³¹P NMR (anisole): $\delta = 53.1$. ¹H NMR (CDCl₃): $\delta = 3.55$ (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃). MS (70 eV, 120°C): *m*/*z* = 583 (72.6%, M⁺), 524 (6.5%, M⁺ – CO₂Me), 308 (80.4%, 524 – Ph₂PS, m^{*} = 181.03), 276 (100%, 308 – S³², m^{*} = 247.32), 216 (56.6%, Ph₂PS⁺). Anal. calcd for $C_{32}H_{26}NO_4PS_2$ (583.6): C, 65.85; H, 4.49; N, 2.39; found: C, 65.24; H, 4.42; N, 2.54.

REFERENCES

- [1] Schmidpeter, A.; Zeiß W. Angew Chem 1971, 83, 398; Angew Chem Int Ed Engl 1971, 10, 396.
- [2] Schmidpeter, A.; von Criegern, T. Angew Chem 1978, 90, 64; Angew Chem Int Ed Engl 1978, 17, 55.
- [3] Schmidpeter, A.; von Criegern, T. J Chem Soc Chem Commun 1978, 470.
- [4] Schmidpeter, A.; von Criegern, T. Angew Chem 1978, 90, 469; Angew Chem Int Ed Engl 1978, 17, 443.
- [5] Schmidpeter, A.; von Criegern, T. Chem Ber 1978, 111, 3747.
- [6] Schmidpeter, A.; von Criegern, T. Z Naturforsch B 1978, 33, 1330.
- [7] Schmidpeter, A.; von Criegern, T. Chem Ber 1979, 112, 3472.
- [8] Schmidpeter, A.; von Criegern, T. Chem Ber 1979, 112, 2762.
- [9] Schmidpeter, A.; von Criegern, T.; Groß, J.; Luber, J.; Weinmaier, J. H.; Tautz, H.; Zeiß, W. Chemistry and Application of Organophosphorus Compounds; Naukova Dumka: Kiev, 1981; pp 256–261.
- [10] Sheldrick, W. S.; Schomburg, D.; Schmidpeter, A.; von Criegern, T. Chem Ber 1980, 113, 55.
- [11] Sheldrick, W. S. Top Curr Chem (Fortschr Chem Forsch) 1978, 75, 1.
- [12] Similar rearrangements in which 2-thionoimidazole derivatives isomerize to 2-iminothiazole derivatives are known: (a) Benhaoua, H.; Texier, F.; Toupet, L.; Carrié, R. Tetrahedron 1988, 44, 1117–1126; (b) Morel, G.; Marchand, E.; Foucaud, A.; Toupet, L. J Org Chem 1990, 55, 1721–1727.